

Vibrational spectra and theoretical calculations of thiocynatobi(pipeidinyl dithiocarbamato) antimony(III)

L.Umaralikhana*, S.Raju^b, B.Liyahathalikhan^c P.S. Joseph^d,

^a Department of physics, Jamal Mohamed college, Trichy 620020.

^b Department of chemistry, Government Arts college, Paramakudi 623 707.

^c Department of chemistry, Raja Serfoji Government Arts College, Tanjavur 631005.

^d Department of Physics, Cauvery College of Engineering & Technology, Trichy 639 103.

ABSTRACT

FTIR and FT-Raman of The spectra thiocyanatobi(piperidinyldithiocarbamate)antimony(III) have been recorded in the region4000-400 cm⁻¹. Utilizing the observed FTIR and FT-Raman data, a whole vibrational assignment and analysis of necessary modes of the compounds were carried out. The optimized molecular geometries, vibrational frequencies were calculated by using Hartree-Fock method with HF/3-21G basis set. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecules. Also, several thermodynamic properties, Mullikan's population analysis, first order hyperpolarizabilitiy, several thermodynamic properties and molecular electrostatic potential were done by the HF method.

Keywords:Thiocyanatebi(piperidinyldithiocarbamates)antimony(FTIR, FT-Raman, HOMO, LUMO.

INTRODUCTION

Dithiocarbamates, a set of small organic molecules with a strong chelating ability en route for inorganic species have widely been used in the agricultural industry for more than 80 years. Nowadays their applications have not only become apparent as pesticides and fungicides, but also widely used as vulcanization accelerators in the rubber industry. Besides, dithiocarbamates are also of biological significance due to their antibacterial, antituberculosis and antifungal properties. Their anti-oxidant properties make them even more valuable compounds [1, 2]. So many papers on dithiocarbamate complexes of fifth group elements (periodic table) have been available [3]. But, slight consideration has been recompense to the influence of heterocyclic amine (piperidine) of dithiocarbamates on the C-N and C-S bonds and consequently on the electronic structure of these complexes. In piperidine (-NR2) plays an important role in the behaviour of dithiocarbamates as ligands [4]. This paper discuss with the synthesis and spectroscopic studies of (SCN) Sb

[SC(S)NC5H10]2, thiocyanatobi (piperidinyl dithio carbamate)antimony(III).

MATERIALS AND METHODS

EXPERIMENTAL

The Iodobi(piperidyldithiocarbamato)antimony(III) were prepared by the literature method [5, 6].All the materials are of analytical grade and hence all of them have been used as without further purification. The purity of these compounds was checked by TLC and melting point determination. The FT-IR spectrum was recorded in the range 4000-400 cm⁻¹ and Raman spectra is scanned in the range of 200-350 cm⁻¹. The UV– visible absorption spectra of title complx have been examined in the range 200–500 nm.

COMPUTATIONAL

Density functional theory scheming are carried out for title complex, Hartree–Fock (HF) and DFT calculations using GAUSSIAN 09W program package [7]. Initial geometry generated from the standard geometrical parameters was decreased without any constraint on the potential energy surface at Hartree–Fock level assuming the standard 32-1G basis set.

PREPARATION OF COMPLEX

Preparation of thiocyanatobi (piperidinyldithiocarbamato) antimony(III):

 $5.0 \text{ mmol of ISb}[SC(S)NC5H10]2 \text{ complex dissolved in } 80 \text{ ml CHCl}_3 \text{ and } 2.5 \text{ mmol of CH4N2S is dissolved in } 25 \text{ ml CCl}_4$ were employed. These two solutions are mixed and heated over water bath for 5 hours. It is allowed to settle, the precipitate is washed with water several times to remove excess of CNS⁻ and then dried under vacuum. The sample is recrystallised from CHCl_3.

RESULT AND DISCUSSION

The synthesised complex have stable to the atmosphere, brown colour and melting point is 204°C via melting point analysis. Then the Thin layer chromatogram(TLC) is developed with a mobile phase of 6:1 CCl₄ and CHCl₃ respectively and stationary phase of silica Gel-G for the complex. Separate peaks have been obtained on spraying dilute copper sulphate solution and the synthesized complex have the R_f value 51.3. In the elemental analysis showed that, 7.42 (7.20) % N, 30.95 (31.21) % C and 3.98 (4.0) % H respectively (figures in parentheses are the calculated values).

MOLECULAR GEOMETRY

The optimized molecular structure of title complex beside with numbering of atoms is shown in Fig. 1. The corresponding global minimum energy -8927.5367169 is obtained by HF functional with the standard 3-21G basis set and the molecule belongs to C1 point group symmetry. The calculated optimized geometrical parameters are presented in Tables 1 and 2, respectively.

FTIR SPECTRA OF THIOCYANATO BIS (PIPERIDINYL DITHIO CARBAMATO) ANTIMONY(III)

The electron donating capacity of the -NR2 group in dithiocarbamates affects the electronic structure of the complexes and it appears to play an important role in the preference of one form over the others. Since increasing the electron releasing ability of -NR2 group intense more electron density on to the sulfur atom, via the π system and, therefore, to the ion of Sb, it causes greater double bond character in bond. This and, therefore, the contribution to one of the resonance forms is reflected in the shifting of C=N to higher frequencies.

The FTIR spectrum of title complex is scanned in the range of 400 to 4000 cm⁻¹ and the fig.2 shows the experimental FTIR spectrum which falls between the stretching frequencies of C-N single bonds (1210, 1248.3 and 1248.3 cm⁻¹)and C=N bonds (1533.3 and 1500cm⁻¹) and can be assigned to C=N. These frequencies are a characteristic of the dithiocarbamates and they seem to be sensitive to the substituents of Sb atoms. A shift to the higher frequency positions is anticipated to correspond to the electron releasing ability of the -NR2 group, but the observed shifts do not follow this order. This irregular behaviour may be due to a hindrance effect, since it is known that the frequency of absorption is influenced by the stereochemistry of the complex. It is clear from the literature, the increased double bond character of C=N bond is associated with decreased double bond character of C=S bond [8-10]. The CH2 bending modes are observed at (1453-1447.6 cm⁻¹). Among this, C=N stretching, CH2 bending and C-N single bond stretching vibrations are more intense and broad than any of the C=S stretching vibrations suggesting only these groups are contributing more to packing of complex molecules in the crystal lattice. Supportively, theoretical FTIR frequency bands are compared with the experimental frequency bands and the assignments mentioned in the Table 1.

RAMAN SPECTRA OF THIOCYANATO BIS(PIPERIDINYLDITHIOCARBAMATO) ANTIMONY(III)

Raman spectra of thiocyanato bis(piperidinyldithiocarbamato) antimony (III) is shown in fig.3. The spectral characteristics are nearly superimposable to the FTIR spectrum. The vibrations, characteristics of C=N stretching vibrations (1504.2cm⁻¹), CH2 bending modes (1441.7, 1344.5cm⁻¹), C-N single bond stretching mode (1258.9cm⁻¹) and C=S stretching modes (between 800 and 1200 cm⁻¹), are clearly evident. As there are several peaks due to C=S stretching vibrations, it could be concluded that the groups are proved to be non-equitant. It is also confirmed by its electronic spectrum where in the π - π * transition of C=S group.

ELECTRONIC ABSORPTION SPECTRA

The electronic absorption spectra of the complex show three absorption bands. The absorption bands are attributed to the electronic transitions in the NCS2 groups of the parent ligands. The electronic spectrum of the title complex is shown in Fig.4. It shows broad absorption band with maximum 259.3 nm is assigned to an intramolecular charge transfer according to complex. This band to the inter ligand $\pi \rightarrow \pi^*$ transition located mainly in the C=S group [11, 12]. This is followed by less intense at 301nm and 310nm. Such absorption bands were also reported for iodo bis dialkyldithiocarbamate complex of antimony [13]. The bands due to second and third (301nm and 310nm) transitions might have overlapped with the absorption band due to s=c=s group. These bands depends on the basic character of the -NR2 group. As the basic character of piperidine (amine) is increased a slight shift to higher frequencies is observed. This phenomenon mirrors the polar character of the C=Nbound.

The optical energy band gap of title complex is calculated by classical Tauc relation as given below $\alpha h \upsilon = [A(h\upsilon - E_g)]^n$ where E_g is the optical band gap. The optical band gap of the title complex is 4.7815 eV.

HOMO – LUMO ANALYSIS

Molecular orbitals (HOMO and LUMO) and their properties such as energies are very useful for physicists and chemists and are very important parameters for quantum chemistry. This is also used by the frontier electron density for calculating the most reactive position in π -electron systems and also explains several types of reaction in conjugated system [14]. The conjugated molecules are branded by a small highest occupied molecular orbital – lowest unoccupied molecular orbital (HOMO-LUMO) parting, which is the result of a major degree of intramolecular charge located from the end-capping electrondonor groups to the efficient electron-acceptor groups through π - conjugated path [15].

This electronic absorption corresponds to the transition from the ground to the first excited state and is mainly defined by one electron excitation from the highest occupied molecular orbital to the lowest unoccupied molecular orbital [16]. Recently, the energy gape between HOMO and LUMO has been used to prove the NLO, bioactivity [17, 18] from the inter ligand $\pi \rightarrow \pi^*$ transition. Figure 5 shows the HOMO – LUMO energy gap analysis.

HOMO energy = -3.2804 eV

LUMO energy = 0.5007 eV

HOMO—LUMO energy gap = 3.7811 eV

Moreover, the lowering in the HOMO and LUMO energy gap

Figure 1. Optimized structure of thiocyanatobi(piperidinyldithiocarbamate) antimony(III)

Bond Length		Bond Angle								
C ₁ -C ₂	1.545	C ₂ -C ₁ -N ₃	110.5	C7-C8-H34	108.5	N ₃ -C ₁ -H ₂₂	110.4	C10-C8-H34	110.3	
C ₁ -N ₃	1.483	$C_2-C_1-H_{21}$	110.6	N9-C7-H31	110.3	C1-N3-C5	116.8	$C_8-C_{10}-C_{12}$	111	
C1-H21	1.088	$C_2-C_1-H_{22}$	110.2	N9-C7-H32	108.2	C1-N3-C13	119.8	C8-C10-H35	110.1	
C1-H22	1.097	C_1 - C_2 - C_4	111.6	C7-N9-C11	115.9	$H_{21}-C_1-H_{22}$	107.4	C8-C10-H36	108.7	
C ₂ -C ₄	1.551	C1-C2-H23	108.4	C7-N9-C17	118.3	$C_4-C_2-H_{23}$	109.9	H ₃₃ -C ₈ -H ₃₄	107.6	
C ₂ -H ₂₃	1.089	C1-C2-H24	109.1	H ₃₁ -C ₇ -H ₃₂	107.3	$C_4-C_2-H_{24}$	110.2	C11-N9-C17	125.1	
C ₂ -H ₂₄	1.086	N ₃ -C ₁ -H ₂₁	107.6	C10-C8-H33	109.9	$C_2-C_4-C_6$	111.4	$N_9-C_{11}-C_{12}$	111.2	
N ₃ -C ₅	1.482	N ₃ -C ₁ -H ₂₂	110.4	C10-C8-H34	110.3	C ₂ -C ₄ -H ₂₅	109.1	N9-C11-H37	109.2	
N ₃ -C ₁₃	1.391	C1-N3-C5	116.8	$C_{8}-C_{10}-C_{12}$	111	C2-C4-H26	110.1	N9-C11-H38	108.8	
C4-C6	1.549	C1-N3-C13	119.8	C8-C10-H35	110.1	H ₂₃ -C ₂ -H ₂₄	107.5	N9-17C-18S	123	
C4-H25	1.088	$H_{21}-C_1-H_{22}$	107.4	C8-C10-H36	108.7	C5-N3-C13	123.3	N9-17C-19S	114.7	
C4-H26	1.088	C ₄ -C ₂ -H ₂₃	109.9	H ₃₃ -C ₈ -H ₃₄	107.6	N ₃ -C ₅ -C ₆	110.4	C_{12} - C_{10} - H_{35}	110.1	
C ₅ -C ₆	1.546	$C_4-C_2-H_{24}$	110.2	C ₁₁ -N ₉ -17C	125.1	N ₃ -C ₅ -H ₂₇	110.6	C_{12} - C_{10} - H_{36}	109.5	
C ₅ -H ₂₇	1.096	$C_2-C_4-C_6$	111.4	$N_9-C_{11}-C_{12}$	111.2	N ₃ -C ₅ -H ₂₈	108.8	C_{10} - C_{12} - C_{11}	111.7	
C5-H28	1.089	C ₂ -C ₄ -H ₂₅	109.1	N ₉ -C ₁₁ -H ₃₇	109.2	N ₃ -C _{13-S14}	124.2	C_{10} - C_{12} - H_{39}	110.5	
C ₆ -H ₂₉	1.087	$C_2-C_4-H_{26}$	110.1	N9-C11-H38	108.8	N ₃ -C ₁₃ -S ₁₆	113.9	C_{10} - C_{12} - H_{40}	109.8	
C ₆ -H ₃₀	1.087	H_{23} - C_2 - H_{24}	107.5	N9-C17-18S	123	C ₆ -C ₄ -H ₂₅	109.8	H_{35} - C_{10} - H_{36}	107.2	
C ₇ -C ₈	1.547	C ₅ -N ₃ -C ₁₃	123.3	N9-C17-19S	114.7	C ₆ -C ₄ -H ₂₆	108.9			
C ₇ -N ₉	1.486	N ₃ -C ₅ -C ₆	110.4	C_{12} - C_{10} - H_{35}	110.1	$C_4 - C_6 - C_5$	111.9			
C ₇ -H ₃₁	1.094	N ₃ -C ₅ -H ₂₇	110.6	C_{12} - C_{10} - H_{36}	109.5	C ₄ -C ₆ -H ₂₉	110.5			
C ₇ -H ₃₂	1.089	N ₃ -C ₅ -H ₂₈	108.8	C_{10} - C_{12} - C_{11}	111.7	$C_4-C_6-H_{30}$	109.8			
C ₈ -C ₁₀	1.542	N ₃ -C ₁₃ -S ₁₄	124.2	C_{10} - C_{12} - H_{39}	110.5	$H_{25}-C_4-H_{26}$	107.4			
C ₈ -H ₃₃	1.086	N ₃ -C ₁₃ -S ₁₆	113.9	C_{10} - C_{12} - H_{40}	109.8	$C_6-C_5-H_{27}$	109.9			
C ₈ -H ₃₄	1.087	C ₆ -C ₄ -H ₂₅	109.8	$H_{35}-C_{10}-H_{36}$	107.2	C ₆ -C ₅ -H ₂₈	109.5			
N ₉ -C ₁₁	1.478	C ₆ -C ₄ -H ₂₆	108.9	C_{12} - C_{11} - H_{37}	109.7	C5-C6-H29	108.7			
N ₉ -C ₁₇	1.394	$C_4-C_6-C_5$	111.9	C_{12} - C_{11} - H_{38}	110.2	C5-C6-H30	108.3			
C_{10} - C_{12}	1.553	$C_4-C_6-H_{29}$	110.5	C_{11} - C_{12} - H_{39}	108	$H_{27}-C_5-H_{28}$	107.5			
C ₁₀ -H ₃₅	1.086	$C_4-C_6-H_{30}$	109.8	C_{11} - C_{12} - H_{40}	109.5	$H_{29}-C_6-H_{30}$	107.5			
C ₁₀ -H ₃₆	1.089	$H_{25}-C_4-H_{26}$	107.4	$H_{37}-C_{11}-H_{38}$	107.7	C8-C7-N9	111.2			
C ₁₁ -C ₁₂	1.551	C ₆ -C ₅ -H ₂₇	109.9	$H_{39}-C_{12}-H_{40}$	107.2	C ₈ -C ₇ -H ₃₁	110.3			
C ₁₁ -H ₃₇	1.093	C ₆ -C ₅ -H ₂₈	109.5	S ₁₄ -C ₁₃ -S ₁₆	121.9	C8-C7-H32	109.6			
C11-H38	1.087	C5-C6-H29	108.7	$S_{18}-C_{17}-19S$	122.2	$C_7 - C_8 - C_{10}$	110.4			
$C_{12}-H_{39}$	1.089	$C_5 - C_6 - H_{30}$	108.3	$S_{20}-C_{42}-N_{42}$	177.1	C7-C8-H33	110.2			

Table 1: Bond Length Bond Angle of optimized thiocyanatobi(piperidinyldithiocarbamate) antimony(III)

Fig.2 (a) Experimental and (b) Theoretical FTIR spectra of thiocyanatobi (piperidinyldithiocarbamato) antimony (III)

S.No	Experimental		Theor	etical	Assignments
	FT-IR	Raman	FT-IR	Raman	
	(cm^{-1})	(cm^{-1})	HF 3-21G	HF 3-21G	
			(cm^{-1})	(cm^{-1})	
1	2416		2410		NCS stretching
2	1533	1504	1558		C = N stretching
3	1500		1474		_
4	1445.1		1425		C=S strong
4		1441	1438		CH ₂ bending modes
5			1434		
5			1424		
5	1360		1397		
8	1356	1344	1356		
9	1291		1313	1248	C–N single bonds
10	1248	1258	1260		
11	1210		1215		
12	1150	1200		1200	C=S weak
13	1108	1140	1100	1140	
14	1078	1050	1064	1105	
15	1025	1025		1025	
16	1000	100	885	1000	
		850		858	
17		415	391	385	Sb– SCN

Table 2. Important FT-IR spectral bands (cm⁻¹) and their assignment of thiocyanatobi (piperidinyldithiocarbamate) antimony(III).

Fig.3 (a) Experimental and (b) Theoretical Raman spectra of thiocyanatobi (piperidinyldithiocarbamato) antimony (III)

Fig.4 Absorption spectra of thiocyanatobi (piperidinyldithiocarbamato) antimony (III)

Fig.5 HOMO – LUMO energy	gap analysis of thiocyanatobi	(piperidinyldithiocarbamato)
antimony (III)		

T (K)	$S (J/mol.K)[S^0_m]$	Ср	$ddH(kJ/mol)[H^0_m]$
		$(J/mol.K)[C^{0}_{p,m}]$	
100.00	481.59	186.89	12.28
200.00	638.47	272.74	35.40
298.15	761.47	348.13	65.88
300.00	763.62	349.55	66.53
400.00	874.70	426.12	105.32
500.00	977.67	498.31	151.60
600.00	1074.29	561.92	204.69
700.00	1165.11	616.31	263.68
800.00	1250.51	662.61	327.69
900.00	1330.90	702.27	395.98
1000.00	1406.71	736.52	467.96

 Table 3. Thermodynamic properties of thiocynatobi (piperidinyldithiocarbamato)

 antimony(III)

Mulliken atomic charges:											
C ₁	-0.0066	C ₈	-0.1042	Sb ₁₅	0.44204	H ₂₂	0.06259	H ₂₉	0.06409	H ₃₆	0.05943
C ₂	-0.1051	N ₉	-0.2777	S ₁₆	-0.0278	H ₂₃	0.06077	H ₃₀	0.06239	H ₃₇	0.06297
N ₃	-0.2772	C ₁₀	-0.1004	C ₁₇	-0.0716	H ₂₄	0.06481	H ₃₁	0.06686	H ₃₈	0.08098
C4	-0.1029	C ₁₁	-0.0095	S ₁₈	-0.07	H ₂₅	0.05836	H ₃₂	0.07613	H ₃₉	0.05971
C ₅	-0.0084	C ₁₂	-0.1028	S ₁₉	-0.0314	H ₂₆	0.05935	H ₃₃	0.05727	H40	0.0616
C ₆	-0.1032	C ₁₃	-0.07	S ₂₀	0.07147	H ₂₇	0.06234	H ₃₄	0.06521	C41	-0.0679
C ₇	-0.0038	S ₁₄	-0.0736	H ₂₁	0.08753	H ₂₈	0.07571	H ₃₅	0.05973	N ₄₂	-0.2072

Table 4. Atomic charges of thiocynatobi (piperidinyldithiocarbamato) antimony(III)

Fig.6 Thermodynamic properties of thiocyanatobi (piperidinyldithiocarbamato) antimony (III)

Fig.7 Plot of Mulliken's charges obtained by HF 3-21G method

Pola	ar coordinate (au)	Polar coordinate × 10 ⁻³³ (esu)	HyperPolar coordinate (au)		HyperPolar coordinate × 10 ⁻³³ (esu)
α_{xx}	226.8913347	33.6252958	β_{xxx}	15.4689174	133.6406181
α_{xy}	-0.1793638	-0.026581715	β_{xxy}	377.8513606	3264.37126
α_{yy}	176.91219	26.21838656	β_{xyy}	3.2509413	28.08585717
α_{xz}	-2.1634314	-0.320620533	β_{yyy}	-2.2282017	-19.25010295
α_{yz}	-00452116	-0.006700359	β_{xxz}	-3.8118087	-32.9313589
α_{zz}	88.0022248	13.04192972	β_{xyz}	-2.401145	-20.744212
			β_{yyz}	-27.4084679	-236.7899767
			β_{xzz}	-3.0031839	-25.94540667
			β_{yzz}	-55.1766673	-476.6877818
			βzzz	-14.054692	-121.4227006
	Polarizabiliti	es (α)	16	3.9352 au	0.024.2952 × 10 ⁻³⁰ esu
F	irst hyperpolariz	ability (β_0)	320.6905 au		2.770542× 10 ⁻³⁰ esu
Aniso	otropy of the Pola	arizability ($\Delta \alpha$)	121.9044 au 0.01806623 10 ⁻³⁰ esu		

Fig.8 Molecular electrostatic potential of thiocyanato bis (piperidinyldithiocarbamato) antimony (III)

clarifies the eventual charge transfer interactions that take place within the molecule. From the fig.4, HOMO is located over the antimony atom and corbamato groups attached to the piperidinyl ring. The HOMO \rightarrow LUMO transition implies an electron density transfer from corbamato groups to thiocyanato group.

THERMODYNAMIC PROPERTIES

On the basis of vibrational analyses, the standard thermodynamic functions: heat capacity $(C_{p,m}^{0})$, entropy (S_{m}^{0}) and enthalpy (H_{m}^{0}) were calculated using Perl script THERMO.PL[19] and are listed in Table 3. Then the graph was drawn using temperature in X axis and standard thermodynamic functions in Y axis (fig.6) As observed from Table 3, the values of $C_{p,m}^{0}$, S_{m}^{0} and H_{m}^{0} all increase with the increase of temperature from 100 to 1000 K , which is attributed to the increase of the molecular vibration as the temperature increases. Table 3. Thermodynamic properties of thiocynatobi (piperidinyldithiocarbamato) antimony(III)

MULLIKEN POPULATION ANALYSIS

Mulliken atomic charge calculation has a main role in the application of quantum chemical calculation to molecular system, because atomic charges affect dipole moment, polarizability, electronic structure of molecular systems. The charge distributions calculated by Mulliken method for the equilibrium geometry of title complex are listed in Table 4. The charge distribution on the molecule has an important influence on vibrational spectra. The resultant, Mulliken's plots are shown in Fig. 7.

PREDICTION OF FIRST HYPERPOLRIZABILITY (B₀)

Analysis of organic metallic compounds having conjugated π electron. Systems and large hyperpolarizability using IR and Raman spectroscopy has evolved as a subject of research. The potential application of the title complex in the field of nonlinear optics demands the study of its structural and bonding features contributing to the hyperpolarizability increase by analysing the vibrational modes using IR and Raman spectroscopy. The HF 3-21G method has been used for the prediction of first hyperpolarizability. The tensor components of first hyperpolarizability (β_0) were systematically calculated by using the same method as said above. From the computed tensorial components, β_0 is the calculated for the title complex by taking into account the Kleimann symmetry relations and square norm of the Cartesian expression for the b tensor. The relevant expressions used for the calculation are shown below.

 $\begin{array}{l} \beta_0 = [(\beta_x^2 + \beta_y^2 + \beta_z^2)^{(\frac{1}{2})} \\ \text{where} \\ \beta_x = (\beta_{xxx} + \beta_{xyy} + \beta_{xzz}) \\ \beta_y = (\beta_{yyy} + \beta_{xxy} + \beta_{yzz}) \\ \beta_z = (\beta_{zzz} + \beta_{xxz} + \beta_{yyz}) \end{array}$

Theoretically calculated values of first hyperpolarizability and dipole moment are 2.770542×10^{-30} esu and 9.111D. The values of 1 and b for urea are 1.3732 D and 0.37289×10^{-30} esu respectively. According to the magnitude of the first hyperpolarizability the title complex will have a potential applicant in the development of NLO materials. Table 5 shows the polar and hyperpolar coordinates of title complex.

MOLECULAR ELECTROSTATIC POTENTIAL (MEP)

MEP at a point in the space around a molecule gives a hint of the net electrostatic effect produced at that point by the total charge distribution (electron + nuclei) of the molecule and relates with the dipole moments, electronegativity, and partial charges chemical reactivity of the molecule. It provides a visual method to understand the relative polarity of the molecule. Thus MEP helps as a useful quantity to explain hydrogen bonding, reactivity and structure-activity relationship of molecule. Potential increases in the order red < orange < yellow < green < blue; red denotes regions of most negative electrostatic potential, which corresponds to an attraction of the proton by the concentrated electron density in the molecule; blue denotes regions of most positive electrostatic potential and green denotes regions of zero potential. Such electrostatic potential have been plotted for thiocynato surfaces bis (piperidinyldithiocarbamato) in HF 3-21G. Projections of these surfaces along the molecular plane are depicted in Figs.8. It is clear from the figure that the atoms N42, C14, S20, ,S14 and S18 holds Most negative electrostatic charges and the piperidine ring holds most positive electrostatic charges. This figure provides a visual representation of the chemically active sites and comparative reactivity of atoms.

CONCLUSION

The work embodied in this dissertation deals with the synthesis characterization of thiocynatobi and (piperidinyldithiocarbamato) antimony(III) complex and adducts with the ligand piperidinyldithiocarbamato. Then melting point, TLC and elemental analysis was down and the results are given. In FT-IR spectral studies were used to investigate the mode of bonding of the ligands to the metal ion. The FT-IR and Raman spectra of adducts show vibrational frequencies in the region 1533-1500cm⁻¹, 1445.1 cm⁻¹, 1291-1210cm⁻¹ and 1150-1000cm⁻¹ which can be attributed to C=N(stretching), C=S(strong), C-N(stretching), C=S(weak) respectively. These bands indicate that dithiocarbamato moiety is bonded to metal ion in a symmetrical bidentate fashion involving both the sulphur atoms of dithiocarbamate moiety.From the electronic spectra the absorption bands are attributed to the electronic transitions in the NCS2 groups of the parent ligands is clearly evident. The HOMO-LUMO energy gap clarifies the eventual charge transfer interactions occur within the molecule. Furthermore, the thermodynamic, Mulliken population analysis, first-order hyperpolarizabilities and MEP properties of the molecule have been calculated in order to get vision into the complex.

REFERENCES

- WHO, Dithiocarbamate Pesticides. "Ethylenethiourea and Propylenethiourea: A General Introduction." WHO, Geneva (1988).
- WHO, 2005. The WHO recommended classification of pesticides by hazard and guidelines to classification, WHO/IPCS/IOMC.
- 3. S. Lippard, progress in Inorganic chemistry, Vol. 11, p. 22 John Wiley, London (1970).
- 4. G. Hogarth, Mini Rev Med Chem., 12, 1202, (2012).

- 5. Tsipis, C. A., & Manoussakis, G. E. (1976). Syntheses and spectral study of new iodobis (dialkyldithiocarbamate) complexes of arsenic, antimony and bismuth. Inorganica Chimica Acta, 18, 35-45.
- Nicolini, M. (Ed.). (2012). Platinum and Other Metal Coordination Compounds in Cancer Chemotherapy: Proceedings of the Fifth International Symposium on Platinum and Other Metal Coordination Compounds in Cancer Chemotherapy Abano, Padua, ITALY—June 29– July 2, 1987 (Vol. 54) Page (750-753). Springer Science & Business Media.
- 7. Gaussian 09, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobavashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
- 8. F.A. Cotton and T. T. Mague, lnorg. Chem. 3, 1402 (1964).
- 9. M. Honda, M. Komura, Y. Kawasaki, T. Tanaka and R. Okawara, J. inorg, nucl. Chem. 30, 3221 (1968).
- Manoussakis, G. E., & Tsipis, C. A. (1973). Preparation and study of some arsenic and antimony trisdithiocarbamates. Journal of Inorganic and Nuclear Chemistry, 35(3), 743-750.

- Nikolov, G. S., Jordanov, N., & Havezov, I. (1971). Diethyldithiocarbamate complexes of tellurium (II) and tellurium (IV). Journal of Inorganic and Nuclear Chemistry, 33(4), 1055-1058.
- 12. Shankaranarayana, M. L., & Patel, C. C. (1965). Infrared absorption studies on some derivatives of xanthic, dithiocarbamic and trithiocarbonic acids. Spectrochimica Acta, 21(1), 95-103.
- 13. Tsipis, C. A., & Manoussakis, G. E. (1976). Syntheses and spectral study of new iodobis (dialkyldithiocarbamate) complexes of arsenic, antimony and bismuth. Inorganica Chimica Acta, 18, 35-45.
- Fukui, K., Yonezawa, T., & Shingu, H. (1952). A molecular orbital theory of reactivity in aromatic hydrocarbons. The Journal of Chemical Physics, 20(4), 722-725.
- Choi, C. H., & Kertesz, M. (1997). Conformational information from vibrational spectra of styrene, transstilbene, and cis-stilbene. The Journal of Physical Chemistry A, 101(20), 3823-3831.
- Kurt, M., Babu, P. C., Sundaraganesan, N., Cinar, M., & Karabacak, M. (2011). Molecular structure, vibrational, UV and NBO analysis of 4-chloro-7-nitrobenzofurazan by DFT calculations. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79(5), 1162-1170.
- Padmaja, L., Ravikumar, C., Sajan, D., Hubert Joe, I., Jayakumar, V. S., Pettit, G. R., & Faurskov Nielsen, O. (2009). Density functional study on the structural conformations and intramolecular charge transfer from the vibrational spectra of the anticancer drug combretastatin-A2. Journal of Raman Spectroscopy, 40(4), 419-428.
- Ravikumar, C., Joe, I. H., & Jayakumar, V. S. (2008). Charge transfer interactions and nonlinear optical properties of push–pull chromophore benzaldehyde phenylhydrazone: a vibrational approach. Chemical physics letters, 460(4), 552-558.
- 19. Irikura, K. K. (2002). Thermo. pl. National Institute of Standards and Technology, Gaithersburg, MD.