Vision-based primary localization method for SLAM mobile robots
DOI:
https://doi.org/10.46947/joaasr632024944Keywords:
SLAM, AMCL, ORB feature points, Initial pose, Identifying wall cornersAbstract
The AMCL (Adaptive Monte Carlo Localization) algorithm with visual provision of initial values is proposed to address the slow localization speed caused by conventional laser SLAM (Simultaneous Localization and Mapping) without initial poses and the global localization failure after a robot abduction event. In the initial map building phase, the ORB (Oriented FAST and Rotated BRIEF) feature values are extracted from the camera and the wall corners are identified, and then the pose information is stored in the database and a feature dictionary is constructed. After restarting, the dictionary is called to perform loopback detection by receiving the images captured by the current camera, and a successful detection results in a rough initial pose. If the detection fails, the initial pose is roughly calculated by identifying the wall corners. Finally, the particle filtering algorithm scatters particles in a small area near the obtained pose and converges to obtain a relatively accurate pose.
Metrics
References
Gaur A, Pawar M.AGV Based Material Handling System: A Literature Review [J].International Journal of Research; Scientific Innovation , Ill, 2016.
Zh. Y.C.The innovation path of AGV navigation technology [J]Logistics Technology and Applications,2018,v.23;No.221(7): 16-9
Berman S, Schechtman E, Edan Y. Evaluation Of Automatic Guided Vehicle Systems [J]. Robotics and Computer Integrated Manufacturing, 2009, 25(3): 522-8. DOI: https://doi.org/10.1016/j.rcim.2008.02.009
Vis I F A, Survey of research in the design and control of automated guided vehicle systems[J]. European Journal of Operational Research, 2004, 170(3): DOI: https://doi.org/10.1016/j.ejor.2004.09.020
Xue-Meng Yang, Min-Ru Yao, Kai Cao. A review of key problems and solutions of SLAM for mobile robots[J]. Computer System Applications,2018,27(7): 1-10
Leonard J J, Durrant-Whyte H F, Cox I J. Dynamic map building for an autonomous mobile robot[J]. International Journal of Robotics Research, 1992, 11(4): 286-298. DOI: https://doi.org/10.1177/027836499201100402
Smith R.C, Cheeseman P. On the representation and estimation of spatial uncertainty[J]. International Journal of Robotics Research,1987(5): 56-68. DOI: https://doi.org/10.1177/027836498600500404
Weininger D. Smiles I. Introduction and encoding rules[J]. Journal of Chemical Information and Computer Sciences,1988,28:31-36. DOI: https://doi.org/10.1021/ci00057a005
Smith R, Self M, Cheeseman P. Estimating uncertain spatial relationships in robotics[M].Autonomous robot vehicles. Springer New York, 1990: 435-461. DOI: https://doi.org/10.1007/978-1-4613-8997-2_14
Kalman R E. A new approach to linear filtering and prediction problems[J]. Journal of basic Engineering,1960,82(1): 35-45. DOI: https://doi.org/10.1115/1.3662552
Davison A J, Reid I D, Molton N D, et al. Mono SLAM: real-time single camera SLAMU[J].IEEE Trans Pattern Anal Mach Intell,2007,29(6):1052-1067. DOI: https://doi.org/10.1109/TPAMI.2007.1049
Davison A J. Real-Time Simultaneous Localisation and Mapping with a SingleCamera[C]. IEEE International Conference on Computer Vision. IEEE Computer Society.2003:1403. DOI: https://doi.org/10.1109/ICCV.2003.1238654
Doucet A, De Freitas N, Murphy K,et al. Rao-Blackwellised particle filtering for dynamic Bayesian networks[C]. Proceedings of the Sixteenth conference on Uncertainty inartificial intelligence. Morgan Kaufmann Publishers Inc., 2000: 176-183.
Montemerlo M, Thrun S, Koller D, et al. Fast SLAM: a factored solution to thesimultaneous localization and mapping problem[C]. Proc. of Theaaai National Conference on ArtificialIntelligence.2002:593-598
Grisetti G, Stachniss C, Burgard W. Improved techniques for grid mapping withrao-blackwellized particle filters [J]. IEEE Transactions on Robotics,2007,23(1): 34-46 DOI: https://doi.org/10.1109/TRO.2006.889486
Dong F., Liu Z, Kong D, et al. Adapting the sample size in particle filters through KLD-sampling[J]. International Journal of Robotics Research, 2003, 22(12): 985-1003. DOI: https://doi.org/10.1177/0278364903022012001
Klein G, Murray D. Parallel tracking and mapping for small AR workspaces[C]. Nara, Japan: IEEE Computer Society,2007:1-10. DOI: https://doi.org/10.1109/ISMAR.2007.4538852
Mur-Artal R, Montiel J M M, Tardos J D .ORB-SLAM: A Versatile and Accurate Monocular SLAM System[J]. Robotics EEE Transactions on,2015,31(5):1147-1163. DOI: https://doi.org/10.1109/TRO.2015.2463671
Mur-Artal R, Tardos J D.ORB-SLAM2: An Open-Source SLAM System for Monocular. Stereo, and RGB-D Cameras [J]. IEEE Transactions on Robotics,2017,33(5): 1255-1262. DOI: https://doi.org/10.1109/TRO.2017.2705103
EngelJ, Schops T, Cremers D. LSD-SLAM: Large-Scale Direct monocular SLAM[C] Zurich, Switzerland: Springer Verlag, 2014: 834-849. DOI: https://doi.org/10.1007/978-3-319-10605-2_54
Engel J, Sturm J, Cremers D. Semi-dense visual odometry for a monocular camera[C]Sydney, NSW, Australia: Institute of Electrical and Electronics Engineers Inc, 2014:1449-1456. DOI: https://doi.org/10.1109/ICCV.2013.183
Forster C , Pizzoli M ,Davide Scaramuzza. SVO: Fast Semi-Direct Monocular Visual Odometry[C]. EEE International Conference on Robotics & Automation. IEEE2014:15-22 DOI: https://doi.org/10.1109/ICRA.2014.6906584
Hess W, Kohler D, Rapp H, et al. Real-timeloop closure in 2D LIDAR SLAM [C]. EEE International Conference on Robotics and Automation,2016: 1271-1278. DOI: https://doi.org/10.1109/ICRA.2016.7487258
Rosten E, Drummond T. Machine learning for high-speed corner detection[C]. Graz. Austria: Springer Verlag,2006:430-443. DOI: https://doi.org/10.1007/11744023_34
Calonder M, Lepetit V, Strecha C, et al. BRIEF: Binary robust independent elementary features[C]. Springer Verlag,2010: 778-792. DOI: https://doi.org/10.1007/978-3-642-15561-1_56
Galvez-Lpez D , Tardos J D . Bags of Binary Words for Fast Place Recognition in Image Sequences[J]. Robotics, IEEE Transactions on,2012,28(5):1188-1197. DOI: https://doi.org/10.1109/TRO.2012.2197158
Lloyd S P . Least Squares Quantization in PCM's[J]. IEEE Transactions on Information Theory,1982,28(2):129-136. DOI: https://doi.org/10.1109/TIT.1982.1056489
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.