Pedestrian detection algorithm based on improved YOLOv3
DOI:
https://doi.org/10.46947/joaasr632024946Keywords:
Pedestrian detection ,YOLOv3,Deep learning,Attention Mechanisms,Target detectionAbstract
The ability to accurately detect pedestrians in the area of interest in real time is crucial in the field of autonomous driving. An improved YOLOv3 model is proposed for pedestrian detection. Firstly, a lightweight model that incorporates a residual network module approach and a CBAM attention mechanism is added to the structure to enhance the feature representation capability of the network. Experimental results show that the improved YOLOv3 target detection model raises the detection accuracy by 4% compared to the original algorithm, and the accuracy precision is improved to a large extent, which verifies the feasibility and effectiveness of the improved YOLOv3 model for pedestrian detection.
Metrics
References
LeCun Y, Bengio Y, Hinton G. Deep learning[J]. nature, 2015, 521(7553): 436-444. DOI: https://doi.org/10.1038/nature14539
Ng P C, Henikoff S. SIFT: Predicting amino acid changes that affect protein function[J]. Nucleic acids research, 2003, 31(13): 3812-3814. DOI: https://doi.org/10.1093/nar/gkg509
Dalal N, Triggs B. Histograms of oriented gradients for human detection[C]//2005 IEEE computer society conference on computer vision and pattern recognition (CVPR'05). Ieee, 2005.
Felzenszwalb P, McAllester D, Ramanan D. A discriminatively trained, multiscale, deformable part model[C]//2008 IEEE conference on computer vision and pattern recognition. Ieee, 2008 DOI: https://doi.org/10.1109/CVPR.2008.4587597
LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.. DOI: https://doi.org/10.1109/5.726791
Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2014: 580-587. DOI: https://doi.org/10.1109/CVPR.2014.81
He K, Zhang X, Ren S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 37(9): 1904-1916. DOI: https://doi.org/10.1109/TPAMI.2015.2389824
Girshick R. Fast r-cnn[C]//Proceedings of the IEEE international conference on computer vision. 2015: 1440-1448. DOI: https://doi.org/10.1109/ICCV.2015.169
Ren S, He K, Girshick R, et al. Faster r-cnn: Towards real-time object detection with region proposal networks[J]. Advances in neural information processing systems, 2015, 28.
Uijlings J R R, Van De Sande K E A, Gevers T, et al. Selective search for object recognition[J]. International journal of computer vision, 2013, 104: 154-171. DOI: https://doi.org/10.1007/s11263-013-0620-5
Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 779-788. DOI: https://doi.org/10.1109/CVPR.2016.91
Liu W, Anguelov D, Erhan D, et al. Ssd: Single shot multibox detector[C]//Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14. Springer International Publishing, 2016: 21-37. DOI: https://doi.org/10.1007/978-3-319-46448-0_2
Jeong J, Park H, Kwak N. Enhancement of SSD by concatenating feature maps for object detection[J]. arXiv preprint arXiv:1705.09587, 2017. DOI: https://doi.org/10.5244/C.31.76
Redmon J, Farhadi A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 7263-7271. DOI: https://doi.org/10.1109/CVPR.2017.690
Redmon J, Farhadi A. Yolov3: An incremental improvement[J]. arXiv preprint arXiv:1804.02767, 2018.
Han J, Liao Y, Zhang J, et al. Target fusion detection of LiDAR and camera based on the improved YOLO algorithm[J]. Mathematics, 2018, 6(10): 213. DOI: https://doi.org/10.3390/math6100213
Kuang P, Ma T, Li F, et al. Real-time pedestrian detection using convolutional neural networks[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2018, 32(11): 1856014. DOI: https://doi.org/10.1142/S0218001418560141
Sermanet P, Kavukcuoglu K, Chintala S, et al. Pedestrian detection with unsupervised multi-stage feature learning[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2013: 3626-3633. DOI: https://doi.org/10.1109/CVPR.2013.465
Angelova A, Krizhevsky A, Vanhoucke V, et al. Real-time pedestrian detection with deep network cascades[J]. 2015. DOI: https://doi.org/10.5244/C.29.32
Li J, Liang X, Shen S M, et al. Scale-aware fast R-CNN for pedestrian detection[J]. IEEE transactions on Multimedia, 2017, 20(4): 985-996. DOI: https://doi.org/10.1109/TMM.2017.2759508
Cai Z, Saberian M, Vasconcelos N. Learning complexity-aware cascades for deep pedestrian detection[C]//Proceedings of the IEEE international conference on computer vision. 2015: 3361-3369. DOI: https://doi.org/10.1109/ICCV.2015.384
Wang X, Xiao T, Jiang Y, et al. Repulsion loss: Detecting pedestrians in a crowd[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 7774-7783. DOI: https://doi.org/10.1109/CVPR.2018.00811
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778. DOI: https://doi.org/10.1109/CVPR.2016.90
Woo S, Park J, Lee J Y, et al. Cbam: Convolutional block attention module[C]//Proceedings of the European conference on computer vision (ECCV). 2018: 3-19. DOI: https://doi.org/10.1007/978-3-030-01234-2_1
Chen Gao, Wang Weihua, Lin Dandan. Infrared vehicle based on untrained convolution neural network Target detection [ J ]. Infrared technology, 2021, 43 (04): 342-348
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.